
Lex − A Lexical Analyzer Generator

MM.. EE.. LLeesskk aanndd EE.. SScchhmmiiddtt

AABBSSTTRRAACCTT

Lex helps write programs whose control flow is directed by instances of regular expressions in
the input stream. It is well suited for editor-script type transformations and for segmenting input in
preparation for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and partitioning
the input into strings which match the given expressions. As each such string is recognized the corre-
sponding program fragment is executed. The recognition of the expressions is performed by a deter-
ministic finite automaton generated by Lex. The program fragments written by the user are executed
in the order in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the
longest match possible at each input point. If necessary, substantial lookahead is performed on the
input, but the input stream will be backed up to the end of the current partition, so that the user has
general freedom to manipulate it.

Lex can generate analyzers in either C or Ratfor, a language which can be translated automati-
cally to portable Fortran. It is available on the PDP-11 UNIX, Honeywell GCOS, and IBM OS sys-
tems. This manual, however, will only discuss generating analyzers in C on the UNIX system, which
is the only supported form of Lex under UNIX Version 7. Lex is designed to simplify interfacing with
Yacc, for those with access to this compiler-compiler system.

July 21, 1975

Lex − A Lexical Analyzer Generator

MM.. EE.. LLeesskk aanndd EE.. SScchhmmiiddtt

Table of Contents

1. Introduction. 1
2. Lex Source. 3
3. Lex Regular Expressions. 3
4. Lex Actions. 5
5. Ambiguous Source Rules. 7
6. Lex Source Definitions. 8
7. Usage. 8
8. Lex and Yacc. 9
9. Examples. 10
10. Left Context Sensitivity. 11
11. Character Set. 12
12. Summary of Source Format. 12
13. Caveats and Bugs. 13
14. Acknowledgments. 13
15. References. 13

1. Introduction.

Lex is a program generator designed for lexi-
cal processing of character input streams. It
accepts a high-level, problem oriented specification
for character string matching, and produces a pro-
gram in a general purpose language which recog-
nizes regular expressions. The regular expressions
are specified by the user in the source specifica-
tions given to Lex. The Lex written code recog-
nizes these expressions in an input stream and par-
titions the input stream into strings matching the
expressions. At the boundaries between strings
program sections provided by the user are exe-
cuted. The Lex source file associates the regular
expressions and the program fragments. As each
expression appears in the input to the program
written by Lex, the corresponding fragment is exe-
cuted.

The user supplies the additional code
beyond expression matching needed to complete
his tasks, possibly including code written by other
generators. The program that recognizes the
expressions is generated in the general purpose
programming language employed for the user’s
program fragments. Thus, a high level expression
language is provided to write the string expres-
sions to be matched while the user’s freedom to
write actions is unimpaired. This avoids forcing
the user who wishes to use a string manipulation
language for input analysis to write processing
programs in the same and often inappropriate
string handling language.

Lex is not a complete language, but rather a
generator representing a new language feature
which can be added to different programming lan-
guages, called ‘‘host languages.’’ Just as general
purpose languages can produce code to run on dif-
ferent computer hardware, Lex can write code in
different host languages. The host language is
used for the output code generated by Lex and
also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex
adaptable to different environments and different
users. Each application may be directed to the
combination of hardware and host language appro-
priate to the task, the user’s background, and the
properties of local implementations. At present,
the only supported host language is C, although
Fortran (in the form of Ratfor [2] has been avail-
able in the past. Lex itself exists on UNIX,
GCOS, and OS/370; but the code generated by
Lex may be taken anywhere the appropriate com-
pilers exist.

Lex turns the user’s expressions and actions
(called ssoouurrccee in this memo) into the host general-
purpose language; the generated program is named
yyyylleexx.. The yyyylleexx program will recognize expres-
sions in a stream (called iinnppuutt in this memo) and
perform the specified actions for each expression as
it is detected. See Figure 1.

Source → Lex → yylex

LEX−2

Input → yylex → Output

An overview of Lex

Figure 1

For a trivial example, consider a program to
delete from the input all blanks or tabs at the ends
of lines.

%%
[\t]+$;

is all that is required. The program contains a
%% delimiter to mark the beginning of the rules,
and one rule. This rule contains a regular expres-
sion which matches one or more instances of the
characters blank or tab (written \t for visibility, in
accordance with the C language convention) just
prior to the end of a line. The brackets indicate
the character class made of blank and tab; the +
indicates ‘‘one or more ...’’; and the $ indicates
‘‘end of line,’’ as in QED. No action is specified,
so the program generated by Lex (yylex) will
ignore these characters. Everything else will be
copied. To change any remaining string of blanks
or tabs to a single blank, add another rule:

%%
[\t]+$;
[\t]+ printf(" ");

The finite automaton generated for this source will
scan for both rules at once, observing at the termi-
nation of the string of blanks or tabs whether or
not there is a newline character, and executing the
desired rule action. The first rule matches all
strings of blanks or tabs at the end of lines, and
the second rule all remaining strings of blanks or
tabs.

Lex can be used alone for simple transfor-
mations, or for analysis and statistics gathering on
a lexical level. Lex can also be used with a parser
generator to perform the lexical analysis phase; it
is particularly easy to interface Lex and Yacc [3].
Lex programs recognize only regular expressions;
Yacc writes parsers that accept a large class of
context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a com-
bination of Lex and Yacc is often appropriate.
When used as a preprocessor for a later parser
generator, Lex is used to partition the input
stream, and the parser generator assigns structure
to the resulting pieces. The flow of control in such
a case (which might be the first half of a compiler,
for example) is shown in Figure 2. Additional pro-
grams, written by other generators or by hand, can
be added easily to programs written by Lex.

lexical grammar
rules rules
↓ ↓

Lex Yacc

↓ ↓
Input → yylex → yyparse → Parsed input

Lex with Yacc

Figure 2
Yacc users will realize that the name yyyylleexx is what
Yacc expects its lexical analyzer to be named, so
that the use of this name by Lex simplifies inter-
facing.

Lex generates a deterministic finite automa-
ton from the regular expressions in the source [4].
The automaton is interpreted, rather than com-
piled, in order to save space. The result is still a
fast analyzer. In particular, the time taken by a
Lex program to recognize and partition an input
stream is proportional to the length of the input.
The number of Lex rules or the complexity of the
rules is not important in determining speed, unless
rules which include forward context require a sig-
nificant amount of rescanning. What does increase
with the number and complexity of rules is the
size of the finite automaton, and therefore the size
of the program generated by Lex.

In the program written by Lex, the user’s
fragments (representing the aaccttiioonnss to be per-
formed as each regular expression is found) are
gathered as cases of a switch. The automaton
interpreter directs the control flow. Opportunity is
provided for the user to insert either declarations
or additional statements in the routine containing
the actions, or to add subroutines outside this
action routine.

Lex is not limited to source which can be
interpreted on the basis of one character look-
ahead. For example, if there are two rules, one
looking for aabb and another for aabbccddeeffgg, and the
input stream is aabbccddeeffhh, Lex will recognize aabb and
leave the input pointer just before ccdd.. Such
backup is more costly than the processing of sim-
pler languages.

LEX−3

2. Lex Source.

The general format of Lex source is:
{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are
often omitted. The second %%%% is optional, but
the first is required to mark the beginning of the
rules. The absolute minimum Lex program is thus

%%
(no definitions, no rules) which translates into a
program which copies the input to the output
unchanged.

In the outline of Lex programs shown above,
the rruulleess represent the user’s control decisions;
they are a table, in which the left column contains
rreegguullaarr eexxpprreessssiioonnss (see section 3) and the right
column contains aaccttiioonnss,, program fragments to be
executed when the expressions are recognized.
Thus an individual rule might appear

integer printf("found keyword INT");
to look for the string iinntteeggeerr in the input stream
and print the message ‘‘found keyword INT’’ when-
ever it appears. In this example the host procedu-
ral language is C and the C library function pprriinnttff
is used to print the string. The end of the expres-
sion is indicated by the first blank or tab charac-
ter. If the action is merely a single C expression,
it can just be given on the right side of the line; if
it is compound, or takes more than a line, it
should be enclosed in braces. As a slightly more
useful example, suppose it is desired to change a
number of words from British to American
spelling. Lex rules such as

colour printf("color");
mechanise printf("mechanize");
petrol printf("gas");

would be a start. These rules are not quite
enough, since the word ppeettrroolleeuumm would become
ggaasseeuumm; a way of dealing with this will be
described later.

LEX−4

3. Lex Regular Expressions.

The definitions of regular expressions are
very similar to those in QED [5]. A regular
expression specifies a set of strings to be matched.
It contains text characters (which match the corre-
sponding characters in the strings being compared)
and operator characters (which specify repetitions,
choices, and other features). The letters of the
alphabet and the digits are always text characters;
thus the regular expression

integer
matches the string iinntteeggeerr wherever it appears and
the expression

a57D
looks for the string aa5577DD..

OOppeerraattoorrss.. The operator characters are
" \ [] ˆ − ? . ∗ + | () $ / { } % < >

and if they are to be used as text characters, an
escape should be used. The quotation mark oper-
ator (") indicates that whatever is contained
between a pair of quotes is to be taken as text
characters. Thus

xyz"++"
matches the string xxyyzz++++ when it appears. Note
that a part of a string may be quoted. It is harm-
less but unnecessary to quote an ordinary text
character; the expression

"xyz++"
is the same as the one above. Thus by quoting
every non-alphanumeric character being used as a
text character, the user can avoid remembering the
list above of current operator characters, and is
safe should further extensions to Lex lengthen the
list.

An operator character may also be turned
into a text character by preceding it with \ as in

xyz\+\+
which is another, less readable, equivalent of the
above expressions. Another use of the quoting
mechanism is to get a blank into an expression;
normally, as explained above, blanks or tabs end a
rule. Any blank character not contained within []
(see below) must be quoted. Several normal C
escapes with \ are recognized: \n is newline, \t is
tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an expression, \n must
be used; it is not required to escape tab and
backspace. Every character but blank, tab, new-
line and the list above is always a text character.

CChhaarraacctteerr ccllaasssseess.. Classes of characters can
be specified using the operator pair []. The con-
struction [[aabbcc]] matches a single character, which
may be aa, bb, or cc. Within square brackets, most
operator meanings are ignored. Only three charac-
ters are special: these are \ − and ˆ. The − char-
acter indicates ranges. For example,

[a−z0−9<>]
indicates the character class containing all the

lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either
order. Using − between any pair of characters
which are not both upper case letters, both lower
case letters, or both digits is implementation
dependent and will get a warning message. (E.g.,
[0−z] in ASCII is many more characters than it is
in EBCDIC). If it is desired to include the charac-
ter − in a character class, it should be first or last;
thus

[−+0−9]
matches all the digits and the two signs.

In character classes, the ˆ operator must
appear as the first character after the left bracket;
it indicates that the resulting string is to be com-
plemented with respect to the computer character
set. Thus

[ˆabc]
matches all characters except a, b, or c, including
all special or control characters; or

[ˆa−zA−Z]
is any character which is not a letter. The \ char-
acter provides the usual escapes within character
class brackets.

AArrbbiittrraarryy cchhaarraacctteerr.. To match almost any
character, the operator character

.
is the class of all characters except newline.
Escaping into octal is possible although non-
portable:

[\40−\176]
matches all printable characters in the ASCII char-
acter set, from octal 40 (blank) to octal 176
(tilde).

OOppttiioonnaall eexxpprreessssiioonnss.. The operator ?? indi-
cates an optional element of an expression. Thus

ab?c
matches either aacc or aabbcc.

RReeppeeaatteedd eexxpprreessssiioonnss.. Repetitions of classes
are indicated by the operators ∗∗ and ++.

aa∗∗
is any number of consecutive aa characters, includ-
ing zero; while

a+
is one or more instances of aa.. For example,

[a−z]+
is all strings of lower case letters. And

[A−Za−z][A−Za−z0−9]∗
indicates all alphanumeric strings with a leading
alphabetic character. This is a typical expression
for recognizing identifiers in computer languages.

AAlltteerrnnaattiioonn aanndd GGrroouuppiinngg.. The operator |
indicates alternation:

(ab | cd)
matches either aabb or ccdd.. Note that parentheses are
used for grouping, although they are not necessary
on the outside level;

LEX−5

ab | cd
would have sufficed. Parentheses can be used for
more complex expressions:

(ab | cd+)?(ef)∗
matches such strings as aabbeeffeeff, eeffeeffeeff, ccddeeff, or ccdddddd ;
but not aabbcc, aabbccdd, or aabbccddeeff.

CCoonntteexxtt sseennssiittiivviittyy.. Lex will recognize a
small amount of surrounding context. The two
simplest operators for this are ˆ̂ and $$. If the first
character of an expression is ˆ̂, the expression will
only be matched at the beginning of a line (after a
newline character, or at the beginning of the input
stream). This can never conflict with the other
meaning of ˆ̂, complementation of character
classes, since that only applies within the [] opera-
tors. If the very last character is $$, the expression
will only be matched at the end of a line (when
immediately followed by newline). The latter
operator is a special case of the // operator charac-
ter, which indicates trailing context. The expres-
sion

ab/cd
matches the string aabb, but only if followed by ccdd..
Thus

ab$
is the same as

ab/\n
Left context is handled in Lex by ssttaarrtt ccoonnddiittiioonnss
as explained in section 10. If a rule is only to be
executed when the Lex automaton interpreter is in
start condition xx,, the rule should be prefixed by

<x>
using the angle bracket operator characters. If we
considered ‘‘being at the beginning of a line’’ to be
start condition OONNEE, then the ˆ operator would be
equivalent to

<ONE>
Start conditions are explained more fully later.

RReeppeettiittiioonnss aanndd DDeefifinniittiioonnss.. The operators
{} specify either repetitions (if they enclose num-
bers) or definition expansion (if they enclose a
name). For example

{digit}
looks for a predefined string named ddiiggiitt and
inserts it at that point in the expression. The defi-
nitions are given in the first part of the Lex input,
before the rules. In contrast,

a{1,5}
looks for 1 to 5 occurrences of aa.

Finally, initial %% is special, being the sepa-
rator for Lex source segments.

LEX−6

4. Lex Actions.

When an expression written as above is
matched, Lex executes the corresponding action.
This section describes some features of Lex which
aid in writing actions. Note that there is a default
action, which consists of copying the input to the
output. This is performed on all strings not other-
wise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any
output, must provide rules to match everything.
When Lex is being used with Yacc, this is the nor-
mal situation. One may consider that actions are
what is done instead of copying the input to the
output; thus, in general, a rule which merely
copies can be omitted. Also, a character combina-
tion which is omitted from the rules and which
appears as input is likely to be printed on the out-
put, thus calling attention to the gap in the rules.

One of the simplest things that can be done
is to ignore the input. Specifying a C null state-
ment, ;; as an action causes this result. A frequent
rule is

[\t\n] ;
which causes the three spacing characters (blank,
tab, and newline) to be ignored.

Another easy way to avoid writing actions is
the action character |, which indicates that the
action for this rule is the action for the next rule.
The previous example could also have been written

" "

"\t"
"\n"

with the same result, although in different style.
The quotes around \n and \t are not required.

In more complex actions, the user will often
want to know the actual text that matched some
expression like [[aa−−zz]]++. Lex leaves this text in an
external character array named yyyytteexxtt.. Thus, to
print the name found, a rule like

[a−z]+ printf("%s", yytext);
will print the string in yyyytteexxtt.. The C function
pprriinnttff accepts a format argument and data to be
printed; in this case, the format is ‘‘print string’’
(% indicating data conversion, and ss indicating
string type), and the data are the characters in
yyyytteexxtt.. So this just places the matched string on
the output. This action is so common that it may
be written as ECHO:

[a−z]+ ECHO;
is the same as the above. Since the default action
is just to print the characters found, one might ask
why give a rule, like this one, which merely speci-
fies the default action? Such rules are often
required to avoid matching some other rule which
is not desired. For example, if there is a rule
which matches rreeaadd it will normally match the
instances of rreeaadd contained in bbrreeaadd or rreeaaddjjuusstt; to
avoid this, a rule of the form [[aa−−zz]]++ is needed.

This is explained further below.

Sometimes it is more convenient to know the
end of what has been found; hence Lex also pro-
vides a count yyyylleenngg of the number of characters
matched. To count both the number of words and
the number of characters in words in the input,
the user might write

[a−zA−Z]+ {words++; chars += yyleng;}
which accumulates in cchhaarrss the number of charac-
ters in the words recognized. The last character in
the string matched can be accessed by

yytext[yyleng−1]

Occasionally, a Lex action may decide that a
rule has not recognized the correct span of charac-
ters. Two routines are provided to aid with this
situation. First, yyyymmoorree(()) can be called to indi-
cate that the next input expression recognized is
to be tacked on to the end of this input. Nor-
mally, the next input string would overwrite the
current entry in yyyytteexxtt.. Second, yyyylleessss ((nn)) may be
called to indicate that not all the characters
matched by the currently successful expression are
wanted right now. The argument nn indicates the
number of characters in yyyytteexxtt to be retained.
Further characters previously matched are
returned to the input. This provides the same sort
of lookahead offered by the / operator, but in a
different form.

EExxaammppllee:: Consider a language which defines
a string as a set of characters between quotation
(") marks, and provides that to include a " in a
string it must be preceded by a \. The regular
expression which matches that is somewhat confus-
ing, so that it might be preferable to write

\"[ˆ"]∗ {
if (yytext[yyleng−1] == ′\\′)

yymore();
else

... normal user processing
}

which will, when faced with a string such as
""aabbcc\\""ddeeff "" first match the five characters ""aabbcc\\ ;
then the call to yyyymmoorree(()) will cause the next part
of the string, ""ddeeff , to be tacked on the end. Note
that the final quote terminating the string should
be picked up in the code labeled ‘‘normal process-
ing’’.

The function yyyylleessss(()) might be used to
reprocess text in various circumstances. Consider
the C problem of distinguishing the ambiguity of
‘‘=−a’’. Suppose it is desired to treat this as ‘‘=−
a’’ but print a message. A rule might be
=−[a−zA−Z] {

printf("Operator (=−) ambiguous\n");
yyless(yyleng−1);
... action for =− ...
}

which prints a message, returns the letter after the

LEX−7

operator to the input stream, and treats the opera-
tor as ‘‘=−’’. Alternatively it might be desired to
treat this as ‘‘= −a’’. To do this, just return the
minus sign as well as the letter to the input:
=−[a−zA−Z] {

printf("Operator (=−) ambiguous\n");
yyless(yyleng−2);
... action for = ...
}

will perform the other interpretation. Note that
the expressions for the two cases might more easily
be written

=−/[A−Za−z]
in the first case and

=/−[A−Za−z]
in the second; no backup would be required in the
rule action. It is not necessary to recognize the
whole identifier to observe the ambiguity. The
possibility of ‘‘=−3’’, however, makes

=−/[ˆ \t\n]
a still better rule.

In addition to these routines, Lex also per-
mits access to the I/O routines it uses. They are:

1) iinnppuutt(()) which returns the next input charac-
ter;

2) oouuttppuutt((cc)) which writes the character cc on
the output; and

3) uunnppuutt((cc)) pushes the character cc back onto
the input stream to be read later by iinnppuutt(())..

By default these routines are provided as macro
definitions, but the user can override them and
supply private versions. These routines define the
relationship between external files and internal
characters, and must all be retained or modified
consistently. They may be redefined, to cause
input or output to be transmitted to or from
strange places, including other programs or inter-
nal memory; but the character set used must be
consistent in all routines; a value of zero returned
by iinnppuutt must mean end of file; and the relation-
ship between uunnppuutt and iinnppuutt must be retained or
the Lex lookahead will not work. Lex does not
look ahead at all if it does not have to, but every
rule ending in ++ ∗∗ ?? or $$ or containing // implies
lookahead. Lookahead is also necessary to match
an expression that is a prefix of another expres-
sion. See below for a discussion of the character
set used by Lex. The standard Lex library
imposes a 100 character limit on backup.

Another Lex library routine that the user
will sometimes want to redefine is yyyywwrraapp(()) which
is called whenever Lex reaches an end-of-file. If
yyyywwrraapp returns a 1, Lex continues with the normal
wrapup on end of input. Sometimes, however, it is
convenient to arrange for more input to arrive
from a new source. In this case, the user should
provide a yyyywwrraapp which arranges for new input

and returns 0. This instructs Lex to continue pro-
cessing. The default yyyywwrraapp always returns 1.

This routine is also a convenient place to
print tables, summaries, etc. at the end of a pro-
gram. Note that it is not possible to write a nor-
mal rule which recognizes end-of-file; the only
access to this condition is through yyyywwrraapp.. In
fact, unless a private version of iinnppuutt(()) is supplied
a file containing nulls cannot be handled, since a
value of 0 returned by iinnppuutt is taken to be end-of-
file.

LEX−8

5. Ambiguous Source Rules.

Lex can handle ambiguous specifications.
When more than one expression can match the
current input, Lex chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same
number of characters, the rule given first is
preferred.

Thus, suppose the rules
integer keyword action ...;
[a−z]+ identifier action ...;

to be given in that order. If the input is iinntteeggeerrss,
it is taken as an identifier, because [[aa−−zz]]++ matches
8 characters while iinntteeggeerr matches only 7. If the
input is iinntteeggeerr, both rules match 7 characters,
and the keyword rule is selected because it was
given first. Anything shorter (e.g. iinntt) will not
match the expression iinntteeggeerr and so the identifier
interpretation is used.

The principle of preferring the longest
match makes rules containing expressions like ..∗∗
dangerous. For example,

′.∗′
might seem a good way of recognizing a string in
single quotes. But it is an invitation for the pro-
gram to read far ahead, looking for a distant single
quote. Presented with the input

′first′ quoted string here, ′second′ here
the above expression will match

′first′ quoted string here, ′second′

which is probably not what was wanted. A better
rule is of the form

′[ˆ′\n]∗′
which, on the above input, will stop after ′′fifirrsstt′′.
The consequences of errors like this are mitigated
by the fact that the .. operator will not match
newline. Thus expressions like ..∗∗ stop on the cur-
rent line. Don’t try to defeat this with expressions
like [[..\\nn]]++ or equivalents; the Lex generated pro-
gram will try to read the entire input file, causing
internal buffer overflows.

Note that Lex is normally partitioning the
input stream, not searching for all possible
matches of each expression. This means that each
character is accounted for once and only once. For
example, suppose it is desired to count occurrences
of both sshhee and hhee in an input text. Some Lex
rules to do this might be

she s++;
he h++;
\n |
. ;

where the last two rules ignore everything besides
hhee and sshhee. Remember that . does not include
newline. Since sshhee includes hhee, Lex will normally
nnoott recognize the instances of hhee included in sshhee,
since once it has passed a sshhee those characters are

gone.

Sometimes the user would like to override
this choice. The action REJECT means ‘‘go do
the next alternative.’’ It causes whatever rule was
second choice after the current rule to be executed.
The position of the input pointer is adjusted
accordingly. Suppose the user really wants to
count the included instances of hhee:

she {s++; REJECT;}
he {h++; REJECT;}
\n |
. ;

these rules are one way of changing the previous
example to do just that. After counting each
expression, it is rejected; whenever appropriate,
the other expression will then be counted. In this
example, of course, the user could note that sshhee
includes hhee but not vice versa, and omit the
REJECT action on hhee; in other cases, however, it
would not be possible a priori to tell which input
characters were in both classes.

Consider the two rules
a[bc]+ { ... ; REJECT;}
a[cd]+ { ... ; REJECT;}

If the input is aabb, only the first rule matches, and
on aadd only the second matches. The input string
aaccccbb matches the first rule for four characters and
then the second rule for three characters. In con-
trast, the input aaccccdd agrees with the second rule
for four characters and then the first rule for three.

In general, REJECT is useful whenever the
purpose of Lex is not to partition the input stream
but to detect all examples of some items in the
input, and the instances of these items may over-
lap or include each other. Suppose a digram table
of the input is desired; normally the digrams over-
lap, that is the word tthhee is considered to contain
both tthh and hhee. Assuming a two-dimensional
array named ddiiggrraamm to be incremented, the appro-
priate source is
%%
[a−z][a−z] {digram[yytext[0]][yytext[1]]++; REJECT;}
\n ;
where the REJECT is necessary to pick up a letter
pair beginning at every character, rather than at
every other character.

LEX−9

6. Lex Source Definitions.

Remember the format of the Lex source:
{definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. The
user needs additional options, though, to define
variables for use in his program and for use by
Lex. These can go either in the definitions section
or in the rules section.

Remember that Lex is turning the rules into
a program. Any source not intercepted by Lex is
copied into the generated program. There are
three classes of such things.

1) Any line which is not part of a Lex rule or
action which begins with a blank or tab is
copied into the Lex generated program.
Such source input prior to the first %%
delimiter will be external to any function in
the code; if it appears immediately after the
first %%, it appears in an appropriate place
for declarations in the function written by
Lex which contains the actions. This mate-
rial must look like program fragments, and
should precede the first Lex rule.

As a side effect of the above, lines which
begin with a blank or tab, and which con-
tain a comment, are passed through to the
generated program. This can be used to
include comments in either the Lex source
or the generated code. The comments
should follow the host language convention.

2) Anything included between lines containing
only %%{{ and %%}} is copied out as above.
The delimiters are discarded. This format
permits entering text like preprocessor state-
ments that must begin in column 1, or copy-
ing lines that do not look like programs.

3) Anything after the third %% delimiter,
regardless of formats, etc., is copied out
after the Lex output.

Definitions intended for Lex are given before
the first %% delimiter. Any line in this section
not contained between %{ and %}, and begining
in column 1, is assumed to define Lex substitution
strings. The format of such lines is

name translation
and it causes the string given as a translation to
be associated with the name. The name and
translation must be separated by at least one
blank or tab, and the name must begin with a let-
ter. The translation can then be called out by the
{name} syntax in a rule. Using {D} for the digits
and {E} for an exponent field, for example, might
abbreviate rules to recognize numbers:

D [0−9]
E [DEde][−+]?{D}+
%%
{D}+ printf("integer");
{D}+"."{D}∗({E})? |
{D}∗"."{D}+({E})? |
{D}+{E}

Note the first two rules for real numbers; both
require a decimal point and contain an optional
exponent field, but the first requires at least one
digit before the decimal point and the second
requires at least one digit after the decimal point.
To correctly handle the problem posed by a For-
tran expression such as 3355..EEQQ..II, which does not
contain a real number, a context-sensitive rule
such as

[0−9]+/"."EQ printf("integer");
could be used in addition to the normal rule for
integers.

The definitions section may also contain
other commands, including the selection of a host
language, a character set table, a list of start con-
ditions, or adjustments to the default size of arrays
within Lex itself for larger source programs. These
possibilities are discussed below under ‘‘Summary
of Source Format,’’ section 12.

LEX−10

7. Usage.

There are two steps in compiling a Lex
source program. First, the Lex source must be
turned into a generated program in the host gen-
eral purpose language. Then this program must
be compiled and loaded, usually with a library of
Lex subroutines. The generated program is on a
file named lleexx..yyyy..cc. The I/O library is defined in
terms of the C standard library [6].

The C programs generated by Lex are
slightly different on OS/370, because the OS com-
piler is less powerful than the UNIX or GCOS
compilers, and does less at compile time. C pro-
grams generated on GCOS and UNIX are the
same.

UUNNIIXX.. The library is accessed by the loader
flag −−llll. So an appropriate set of commands is

lex source cc lex.yy.c −ll
The resulting program is placed on the usual file
aa..oouutt for later execution. To use Lex with Yacc
see below. Although the default Lex I/O routines
use the C standard library, the Lex automata
themselves do not do so; if private versions of
iinnppuutt,, oouuttppuutt and uunnppuutt are given, the library can
be avoided.

LEX−11

8. Lex and Yacc.

If you want to use Lex with Yacc, note that
what Lex writes is a program named yyyylleexx(()),, the
name required by Yacc for its analyzer. Normally,
the default main program on the Lex library calls
this routine, but if Yacc is loaded, and its main
program is used, Yacc will call yyyylleexx(()).. In this
case each Lex rule should end with

return(token);
where the appropriate token value is returned. An
easy way to get access to Yacc’s names for tokens
is to compile the Lex output file as part of the
Yacc output file by placing the line

include "lex.yy.c"
in the last section of Yacc input. Supposing the
grammar to be named ‘‘good’’ and the lexical rules
to be named ‘‘better’’ the UNIX command
sequence can just be:

yacc good
lex better
cc y.tab.c −ly −ll

The Yacc library (−ly) should be loaded before
the Lex library, to obtain a main program which
invokes the Yacc parser. The generations of Lex
and Yacc programs can be done in either order.

LEX−12

9. Examples.

As a trivial problem, consider copying an
input file while adding 3 to every positive number
divisible by 7. Here is a suitable Lex source pro-
gram

%%
int k;

[0−9]+ {
k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d",k);
}

to do just that. The rule [0−9]+ recognizes
strings of digits; aattooii converts the digits to binary
and stores the result in kk.. The operator %
(remainder) is used to check whether kk is divisible
by 7; if it is, it is incremented by 3 as it is written
out. It may be objected that this program will
alter such input items as 4499..6633 or XX77. Further-
more, it increments the absolute value of all nega-
tive numbers divisible by 7. To avoid this, just
add a few more rules after the active one, as here:
%%

int k;
−?[0−9]+ {

k = atoi(yytext);
printf("%d", k%7 == 0 ? k+3 : k);
}

−?[0−9.]+ ECHO;
[A-Za-z][A-Za-z0-9]+ ECHO;
Numerical strings containing a ‘‘.’’ or preceded by
a letter will be picked up by one of the last two
rules, and not changed. The iiff−−eellssee has been
replaced by a C conditional expression to save
space; the form aa??bb::cc means ‘‘if aa then bb else cc’’.

For an example of statistics gathering, here
is a program which histograms the lengths of
words, where a word is defined as a string of let-
ters.

int lengs[100];
%%
[a−z]+ lengs[yyleng]++;
. |
\n ;
%%
yywrap()
{
int i;
printf("Length No. words\n");
for(i=0; i<100; i++)

if (lengs[i] > 0)
printf("%5d%10d\n",i,lengs[i]);

return(1);
}

This program accumulates the histogram, while
producing no output. At the end of the input it
prints the table. The final statement rreettuurrnn((11));;

indicates that Lex is to perform wrapup. If
yyyywwrraapp returns zero (false) it implies that further
input is available and the program is to continue
reading and processing. To provide a yyyywwrraapp that
never returns true causes an infinite loop.

As a larger example, here are some parts of
a program written by N. L. Schryer to convert
double precision Fortran to single precision For-
tran. Because Fortran does not distinguish upper
and lower case letters, this routine begins by defin-
ing a set of classes including both cases of each let-
ter:

a [aA]
b [bB]
c [cC]
...
z [zZ]

An additional class recognizes white space:
W [\t]∗

The first rule changes ‘‘double precision’’ to ‘‘real’’,
or ‘‘DOUBLE PRECISION’’ to ‘‘REAL’’.
{d}{o}{u}{b}{l}{e}{W}{p}{r}{e}{c}{i}{s}{i}{o}{n} {

printf(yytext[0]==′d′? "real" : "REAL");
}

Care is taken throughout this program to preserve
the case (upper or lower) of the original program.
The conditional operator is used to select the
proper form of the keyword. The next rule copies
continuation card indications to avoid confusing
them with constants:

ˆ" "[ˆ 0] ECHO;
In the regular expression, the quotes surround the
blanks. It is interpreted as ‘‘beginning of line,
then five blanks, then anything but blank or zero.’’
Note the two different meanings of ˆ̂. There follow
some rules to change double precision constants to
ordinary floating constants.
[0−9]+{W}{d}{W}[+−]?{W}[0−9]+ |
[0−9]+{W}"."{W}{d}{W}[+−]?{W}[0−9]+ |
"."{W}[0−9]+{W}{d}{W}[+−]?{W}[0−9]+ {

/∗ convert constants ∗/
for(p=yytext; ∗p != 0; p++)

{
if (∗p == ′d′ || ∗p == ′D′)

∗p=+ ′e′− ′d′;
ECHO;
}

After the floating point constant is recognized, it is
scanned by the ffoorr loop to find the letter dd or DD.
The program than adds ′′ee′′−−′′dd′′, which converts it
to the next letter of the alphabet. The modified
constant, now single-precision, is written out
again. There follow a series of names which must
be respelled to remove their initial dd. By using the
array yyyytteexxtt the same action suffices for all the
names (only a sample of a rather long list is given
here).

{d}{s}{i}{n} |

LEX−13

{d}{c}{o}{s} |
{d}{s}{q}{r}{t} |
{d}{a}{t}{a}{n} |
...
{d}{f}{l}{o}{a}{t} printf("%s",yytext+1);

Another list of names must have initial dd changed
to initial aa:

{d}{l}{o}{g} |
{d}{l}{o}{g}10 |
{d}{m}{i}{n}1 |
{d}{m}{a}{x}1 {

yytext[0] =+ ′a′ − ′d′;
ECHO;
}

And one routine must have initial dd changed to
initial rr:

{d}1{m}{a}{c}{h} {yytext[0] =+ ′r′ − ′d′;

To avoid such names as ddssiinnxx being detected as
instances of ddssiinn, some final rules pick up longer
words as identifiers and copy some surviving char-
acters:

[A−Za−z][A−Za−z0−9]∗ |
[0−9]+ |
\n |
. ECHO;

Note that this program is not complete; it does
not deal with the spacing problems in Fortran or
with the use of keywords as identifiers.

LEX−14

10. Left Context Sensitivity.

Sometimes it is desirable to have several sets
of lexical rules to be applied at different times in
the input. For example, a compiler preprocessor
might distinguish preprocessor statements and
analyze them differently from ordinary statements.
This requires sensitivity to prior context, and there
are several ways of handling such problems. The ˆ̂
operator, for example, is a prior context operator,
recognizing immediately preceding left context just
as $$ recognizes immediately following right con-
text. Adjacent left context could be extended, to
produce a facility similar to that for adjacent right
context, but it is unlikely to be as useful, since
often the relevant left context appeared some time
earlier, such as at the beginning of a line.

This section describes three means of deal-
ing with different environments: a simple use of
flags, when only a few rules change from one envi-
ronment to another, the use of ssttaarrtt ccoonnddiittiioonnss on
rules, and the possibility of making multiple lexical
analyzers all run together. In each case, there are
rules which recognize the need to change the envi-
ronment in which the following input text is ana-
lyzed, and set some parameter to reflect the
change. This may be a flag explicitly tested by
the user’s action code; such a flag is the simplest
way of dealing with the problem, since Lex is not
involved at all. It may be more convenient, how-
ever, to have Lex remember the flags as initial con-
ditions on the rules. Any rule may be associated
with a start condition. It will only be recognized
when Lex is in that start condition. The current
start condition may be changed at any time.
Finally, if the sets of rules for the different envi-
ronments are very dissimilar, clarity may be best
achieved by writing several distinct lexical analyz-
ers, and switching from one to another as desired.

Consider the following problem: copy the
input to the output, changing the word mmaaggiicc to
fifirrsstt on every line which began with the letter aa,
changing mmaaggiicc to sseeccoonndd on every line which
began with the letter bb, and changing mmaaggiicc to
tthhiirrdd on every line which began with the letter cc.
All other words and all other lines are left
unchanged.

These rules are so simple that the easiest
way to do this job is with a flag:

int flag;
%%
ˆa {flag = ′a′; ECHO;}
ˆb {flag = ′b′; ECHO;}
ˆc {flag = ′c′; ECHO;}
\n {flag = 0 ; ECHO;}
magic {

switch (flag)
{

case ′a′: printf("first"); break;
case ′b′: printf("second"); break;
case ′c′: printf("third"); break;
default: ECHO; break;
}
}

should be adequate.

To handle the same problem with start con-
ditions, each start condition must be introduced to
Lex in the definitions section with a line reading

%Start name1 name2 ...
where the conditions may be named in any order.
The word SSttaarrtt may be abbreviated to ss or SS. The
conditions may be referenced at the head of a rule
with the <> brackets:

<name1>expression
is a rule which is only recognized when Lex is in
the start condition nnaammee11. To enter a start condi-
tion, execute the action statement

BEGIN name1;
which changes the start condition to nnaammee11. To
resume the normal state,

BEGIN 0;
resets the initial condition of the Lex automaton
interpreter. A rule may be active in several start
conditions:

<name1,name2,name3>
is a legal prefix. Any rule not beginning with the
<> prefix operator is always active.

The same example as before can be written:
%START AA BB CC
%%
ˆa {ECHO; BEGIN AA;}
ˆb {ECHO; BEGIN BB;}
ˆc {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA>magic printf("first");
<BB>magic printf("second");
<CC>magic printf("third");

where the logic is exactly the same as in the previ-
ous method of handling the problem, but Lex does
the work rather than the user’s code.

LEX−15

11. Character Set.

The programs generated by Lex handle
character I/O only through the routines iinnppuutt,,
oouuttppuutt,, and uunnppuutt.. Thus the character representa-
tion provided in these routines is accepted by Lex
and employed to return values in yyyytteexxtt.. For
internal use a character is represented as a small
integer which, if the standard library is used, has a
value equal to the integer value of the bit pattern
representing the character on the host computer.
Normally, the letter aa is represented as the same
form as the character constant ′′aa′′. If this interpre-
tation is changed, by providing I/O routines which
translate the characters, Lex must be told about
it, by giving a translation table. This table must
be in the definitions section, and must be brack-
eted by lines containing only ‘‘%T’’. The table
contains lines of the form

{integer} {character string}
which indicate the value associated with each char-
acter. Thus the next example

%T
1 Aa
2 Bb
...
26 Zz
27 \n
28 +
29 −
30 0
31 1
...
39 9
%T

Sample character table.
maps the lower and upper case letters together
into the integers 1 through 26, newline into 27, +
and − into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a
table is supplied, every character that is to appear
either in the rules or in any valid input must be
included in the table. No character may be
assigned the number 0, and no character may be
assigned a bigger number than the size of the
hardware character set.

LEX−16

12. Summary of Source Format.

The general form of a Lex source file is:
{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

1) Definitions, in the form ‘‘name space trans-
lation’’.

2) Included code, in the form ‘‘space code’’.

3) Included code, in the form
%{
code
%}

4) Start conditions, given in the form
%S name1 name2 ...

5) Character set tables, in the form
%T
number space character-string
...
%T

6) Changes to internal array sizes, in the form
%xx nnnnnn

where nnnnnn is a decimal integer representing
an array size and xx selects the parameter as
follows:

Letter Parameter
p positions
n states
e tree nodes
a transitions
k packed character classes
o output array size

Lines in the rules section have the form ‘‘expres-
sion action’’ where the action may be continued
on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following
operators:
x the character "x"
"x" an "x", even if x is an operator.
\x an "x", even if x is an operator.
[xy] the character x or y.
[x−z] the characters x, y or z.
[ˆx] any character but x.
. any character but newline.
ˆx an x at the beginning of a line.
<y>x an x when Lex is in start condition y.
x$ an x at the end of a line.
x? an optional x.
x∗ 0,1,2, ... instances of x.
x+ 1,2,3, ... instances of x.
x|y an x or a y.
(x) an x.
x/y an x but only if followed by y.
{xx} the translation of xx from the definitions section.

x{m,n} mm through nn occurrences of x

13. Caveats and Bugs.

There are pathological expressions which
produce exponential growth of the tables when
converted to deterministic machines; fortunately,
they are rare.

REJECT does not rescan the input; instead
it remembers the results of the previous scan.
This means that if a rule with trailing context is
found, and REJECT executed, the user must not
have used uunnppuutt to change the characters forth-
coming from the input stream. This is the only
restriction on the user’s ability to manipulate the
not-yet-processed input.

LEX−17

14. Acknowledgments.

As should be obvious from the above, the
outside of Lex is patterned on Yacc and the inside
on Aho’s string matching routines. Therefore,
both S. C. Johnson and A. V. Aho are really origi-
nators of much of Lex, as well as debuggers of it.
Many thanks are due to both.

The code of the current version of Lex was
designed, written, and debugged by Eric Schmidt.

LEX−18

15. References.

1. B. W. Kernighan and D. M. Ritchie, TThhee CC
PPrrooggrraammmmiinngg LLaanngguuaaggee,, Prentice-Hall, N. J.
(1978).

2. B. W. Kernighan, RRaattffoorr:: AA PPrreepprroocceessssoorr
ffoorr aa RRaattiioonnaall FFoorrttrraann,, Software − Practice
and Experience, 5, pp. 395-496 (1975).

3. S. C. Johnson, YYaacccc:: YYeett AAnnootthheerr CCoommppiilleerr
CCoommppiilleerr,, Computing Science Technical
Report No. 32, 1975, Bell Laboratories,
Murray Hill, NJ 07974.

4. A. V. Aho and M. J. Corasick, EEffifficciieenntt
SSttrriinngg MMaattcchhiinngg:: AAnn AAiidd ttoo BBiibblliiooggrraapphhiicc
SSeeaarrcchh,, Comm. ACM 18, 333-340 (1975).

5. B. W. Kernighan, D. M. Ritchie and K. L.
Thompson, QQEEDD TTeexxtt EEddiittoorr,, Computing
Science Technical Report No. 5, 1972, Bell
Laboratories, Murray Hill, NJ 07974.

6. D. M. Ritchie, private communication. See
also M. E. Lesk, TThhee PPoorrttaabbllee CC LLiibbrraarryy,,
Computing Science Technical Report No. 31,
Bell Laboratories, Murray Hill, NJ 07974.

